
Java SE 9 modules
An introduction
Stephen Colebourne - @jodastephen
Engineering Lead, OpenGamma
April 2017

Topics
● Introduction
● Issues and Requirements
● Module basics
● Module info
● Calling code
● Reflection
● Migration
● Summary

Modules - Project Jigsaw

https://www.flickr.com/photos/distillated/4019168958/

Modules
● JPMS - Java Platform Module System
● Main feature of Java SE 9
● Developed as Project Jigsaw
● Originally targetted at Java SE 7

○ first JSR was in 2005, 12 years ago

● Still incomplete even though very late in 9 development
● Planned release date of July 27th 2017

○ just over 100 days!

Goals
● Scale Java SE to small devices
● Improve security and maintainability
● Better application performance
● Easier to construct & maintain libraries/applications

JDK too big
● Java SE 8 has 210 packages
● Many are not needed by all applications

○ CORBA, Swing, AWT, XML

● Need to split JDK into smaller units, aka modules

Modularised JDK
● 24 modules in Java SE 9
● Every application gets java.base

○ packages java.lang, io, math, net, nio, util, security, text, time

● Separate modules for
○ logging
○ sql
○ xml
○ desktop (AWT/Swing)
○ prefs
○ rmi

Multi-module Javadoc

Deprecated modules
● 6 modules are deprecated for removal

○ java.activation
○ java.corba
○ java.transaction
○ java.xml.bind
○ java.xml.ws
○ java.xml.ws.annotation

● Mass deletion from the JDK!
● Not in Java 9 by default!

Module graph
Out of date, but gives general idea!

Official process
● JEP

○ 200: The Modular JDK
○ 201: Modular Source Code
○ 220: Modular Run-Time Images
○ 260: Encapsulate Most Internal APIs
○ 261: Module System
○ 282: jlink: The Java Linker

● JSR
○ JSR 376: Java Platform Module System

http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/201
http://openjdk.java.net/jeps/201
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/282
http://openjdk.java.net/jeps/282
http://openjdk.java.net/projects/jigsaw/spec
http://openjdk.java.net/projects/jigsaw/spec

Issues to Requirements

https://www.flickr.com/photos/distillated/4019168958/

Classpath
● Classes are loaded on demand
● Classpath specifies where to find bytecode

○ java -classpath lib/aaa.jar;lib/bbb.jar

● Boot classpath loads the JDK - rt.jar
● Extension classpath loads standard extensions
● User classpath loads user code

○ Defaults to current directory
○ Typically specified using -classpath or -cp
○ Can be jar files or directories

ClassLoader
● Every class is loaded by one class loader
● Most class loaders delegate to a parent
● One class loader for each of the three classpaths

ClassLoader
● Get class from ClassLoader
● Look in parent first
● Searching can be slow

Application
ClassLoader

Extension
ClassLoader

Boot
ClassLoader

MyFoo.class

String.class

Questions
● What happens if class not found on classpath?
● What happens if class appears twice on classpath?
● Does order matter in the classpath?
● What happens if same class is loaded by two different

class loaders?

Classpath

Once on the classpath
● A can call B and vice versa
● A can call C and vice versa
● B can call C and vice versa

Jar files meaningless

A.class

B.class

C.class

Requirement 1
● Reliable configuration

○ replace classpath with graph of dependencies
○ know what is needed to run the application

● When application starts
○ check everything present
○ check no duplicates
○ potentially perform lookup optimisations

Packages are all we have
● Applications & libraries need to be multi-package
● More things public than desirable
● Often see packages with "impl" or "internal" in name
● Clear sign of a missing language feature

Example
● Jackson JSON/XML serialization

○ com.fasterxml.jackson.databind
○ com.fasterxml.jackson.databind.deser
○ com.fasterxml.jackson.databind.deser.impl
○ com.fasterxml.jackson.databind.jsontype
○ com.fasterxml.jackson.databind.jsontype.impl
○ com.fasterxml.jackson.databind.ser
○ com.fasterxml.jackson.databind.ser.impl
○ com.fasterxml.jackson.databind.ser.std
○ com.fasterxml.jackson.databind.type
○ com.fasterxml.jackson.databind.util

Example
● You were never supposed to use code in:

○ sun.misc.*
○ jdk.internal.*
○ etc.

Requirement 2
● Strong encapsulation

○ module can declare an API to other modules
○ packages not on the API are hidden

● Use this to enhance security
○ non-public elements cannot be accessed

JPMS basics

https://www.flickr.com/photos/distillated/4019168958/

What is a module?
● Named
● Set of packages (classes/interfaces)
● Module metadata (module-info.class)

● Typically packaged as a .jar file
● Enforced by the JVM

○ JVM understands classes, interfaces, packages, and now modules

Without modules

opengamma-util.jar
com.opengamma.util

com.opengamma.util.math

com.opengamma.util.impl

Without modules

opengamma-util.jar
com.opengamma.util

com.opengamma.util.math

com.opengamma.util.impl

If this .jar file is on classpath, any
public type/method from any
package can be used

With modules

opengamma-util.jar
com.opengamma.util

com.opengamma.util.math

module-info.class

com.opengamma.util.impl

With modules
opengamma.util

com.opengamma.util

com.opengamma.util.math

module-info.class

com.opengamma.util.impl

module opengamma.util {

 exports com.opengamma.util;

 exports com.opengamma.util.math;

}

With modules
opengamma.util

com.opengamma.util

com.opengamma.util.math

module-info.class

com.opengamma.util.impl

module opengamma.util {

 exports com.opengamma.util;

 exports com.opengamma.util.math;

}

Non-exported packages cannot be
seen outside the module

How is it enforced
● Modulepath as well as classpath
● Jar must have a module-info.class
● Module rules enforced when jar on modulepath
● Rules not enforced when jar on classpath
● JVM determines and validates module graph

○ checked at startup
○ advanced use cases can alter parts of the graph at runtime

Modular JDK
● JDK modules always run in module mode
● Classpath sees whole JDK
● Modules specify which JDK modules they need
● Changes JDK structure

○ no more rt.jar
○ packaged as .jmod files
○ no more boot classpath
○ no more extension classpath

JPMS module-info

https://www.flickr.com/photos/distillated/4019168958/

Creating a module
● Two basic questions
● What modules does it depend on?

○ depends on java.base by default

● What packages does it export?
○ nothing exported by default

Module metadata
module opengamma.util {

 // other modules this module depends on

 requires google.guava;

 requires joda.beans;

 // packages this module exports to other modules

 exports com.opengamma.util;

}

Module graph

opengamma.util

joda.beansgoogle.guava

Dependencies
● org.joda.beans depends on org.joda.convert

module joda.beans {

 // other modules this module depends on

 requires joda.convert;

 // packages this module exports to other modules

 exports org.joda.beans;

}

Module graph

opengamma.util

joda.beansgoogle.guava

joda.convert

Transitive dependencies
● But, Joda-Beans exposes types from Joda-Convert
● Express concept using "requires transitive"

module joda.beans {

 // other modules this module depends on

 requires transitive joda.convert;

 // packages this module exports to other modules

 exports org.joda.beans;

}

Module graph

opengamma.util

joda.beansgoogle.guava

joda.convert

Optional dependencies
● But org.joda.convert has optional dependency
● If Guava exists at runtime, Joda-Convert adapts

module joda.convert {

 // other modules this module depends on

 requires static google.guava;

 // packages this module exports to other modules

 exports org.joda.convert;

}

Module graph

opengamma.util

joda.beans

google.guava

joda.convert

Checks
● Module path contains a set of modules
● One module is the root
● Other modules are resolved to form a graph
● System ensures all necessary modules are available
● System ensures no module found twice
● System ensures same package not in two modules
● System ensures graph has no cycles

Modulepath
● A coherent modulepath is your problem
● Versions, and their selection, not part of JPMS

○ do not put version in module name

● Typically will be done by Maven or Gradle
● Just like the classpath is assembled today

Open to debate as to how much this achieves
the reliable configuration requirement

Services
● SQL drivers, XML parsers, etc.
● Can be specified in module-info
● Module that contains the service implementation:

○ provides com.foo.XmlParser with com.foo.MyXmlParser

● Module that uses the service:
○ uses com.foo.XmlParser

Calling code in another module

https://www.flickr.com/photos/distillated/4019168958/

Hiding packages
● Given two packages

○ org.joda.beans
○ org.joda.beans.impl

● It is possible to completely hide the internal package
○ export org.joda.beans
○ do not export org.joda.beans.impl

Hiding a package

opengamma.util

joda.beansgoogle.guava

org.joda.beans

org.joda.beans.impl

com.opengamma.util

com.google.guava

joda.convert
org.joda.convert

Access
● Only exported packages are visible to other modules
● All other packages are private to the module
● "public" no longer means "public"
● Other modules can only see and use code if:

○ public
○ package is exported by target module
○ package is readable from this module

● Combination referred to as "accessibility"

Access

opengamma.util

joda.beansgoogle.guava

org.joda.beans

org.joda.beans.impl

com.opengamma.util

com.google.guava

joda.convert
org.joda.convert

JVM only allow public method to be
used if readable (downward arrows)
and package is exported (dark blue)

Access

org.joda.beans

org.joda.beans.impl

com.opengamma.util

com.google.guava

JVM prevents calls along dotted lines

Targetted exports
● Package can be exported to a specific module:

○ exports org.joda.beans.impl to joda.special

● Effectively a kind of "friend" access
● Usually suggests poor package structure

Lockdown
● Ability to lockdown packages is powerful
● However, it only works on the modulepath
● Paranoid code could refuse to work on classpath

Reflection

https://www.flickr.com/photos/distillated/4019168958/

Reflection
● Powerful mechanism to access code
● Access package and private scope

○ use setAccessible()

● Vital to frameworks, particularly for bean creation

Reflection in 9
● Can access public elements of exported packages
● Cannot access package/private types/members
● Cannot access non-exported packages
● Much stronger barrier than previously

○ setAccessible() does not help

Reflection

module joda.beans {

 // other modules this module depends on

 requires transitive joda.convert;

 // packages this module exports to other modules

 exports org.joda.beans;

 opens org.joda.beans.impl;

}

● Modules can selectively allow reflection
● Use "opens", also enables setAccessible()

Reflection

open module joda.beans {

 // other modules this module depends on

 requires transitive joda.convert;

 // packages this module exports to other modules

 exports org.joda.beans;

}

● Modules can open all packages if desired

Reflection on the JDK
● JDK is fully modular
● JDK does not have "open" packages
● Thus, cannot reflect on non-public JDK
● Big security boost
● Breaks many existing libraries
● Can use command line flags to force JDK open

○ useful in the short term until the libraries are fixed

Reflecting on modules
● Module information is available to reflection

○ new Module class and getModule() method
○ allows the JVM module graph to be accessed

● See also the ModuleLayer concept
○ intended for advanced use cases

Migration

https://www.flickr.com/photos/distillated/4019168958/

Migration
● Take existing code and migrate it
● New rules make this tricky in some cases

○ eg. SLF4J will need major rework

Use classpath
● Most existing code will run on Java SE 9 classpath
● If it uses internal JDK API, fix or use a flag:

○ --add-exports, --add-opens, --permit-illegal-access

● If it uses removed JDK module, fix or use a flag:
○ --add-modules java.xml.bind

Migration
● Classpath mapped to the "unnamed module"
● Unnamed module reads all other modules
● Cannot access non-exported packages
● Most existing code should run fine in unnamed module
● Named modules cannot access the unnamed module

Classpath

classpath

Foo.jar Bar.jar

unnamed

Classpath

java.se

modulepath

classpath

Foo.jar Bar.jar

unnamed

Classpath

java.se

modulepath

classpath

Foo.jar Bar.jar

joda.beans

joda.convert

Migration
● Additional "automatic module" concept
● Jars without module-info on modulepath
● Exports all packages in jar
● Reads the all other modules, including unnamed
● Used to handle libraries that have not yet modularized

WARNING! There are serious concerns about
using automatic modules in open source projects.
Maven Central will likely ban projects that depend
on an automatic module.

unnamed

Classpath

java.se

modulepath

classpath

Foo.jar Bar.jar

joda.beans

joda-convert.jar

Module naming
● No agreement on module names yet
● Please wait until clear convention agreed
● Might be like package names

○ org.joda.convert

● Might be shorter, but this will lead to clashes
○ joda.convert

WARNING! There are still serious naming concerns
from the open source community.

Modules and Maven
● Maven creates a tree of dependencies
● Often enforced by IDEs
● Not enforced at runtime
● Likely that each pom.xml will be a JPMS module

○ unclear whether module-info.java will be hand written
○ or derived from pom.xml (I suspect hand written, with IDE help)

● JPMS does not handle versions
● JPMS does not select jar files from Maven repo

Modules and OSGi
● OSGi is a module system based on the classpath
● It still works fine on the classpath
● Dynamic loading, lifecycle etc. not part of JPMS
● JPMS is not ClassLoader based

○ all classes in a module have the same ClassLoader
○ same ClassLoader may be used by many modules

Summary

https://www.flickr.com/photos/distillated/4019168958/

Summary
● Modules are a new JVM concept, exposed in Java

○ don't confuse with Maven, OSGi, JBoss modules

● Moving to modules is non-trivial
○ no reflection on JDK internals without command line flag
○ parts of the JDK removed by default and need command line flag

● Reflection is being restricted
○ command line flags allow this to be broken

● Don't rush to modularize!
○ wait for open source to do so first

Summary
● Project Jigsaw:

○ http://openjdk.java.net/projects/jigsaw/
○ Time to test Java SE 9 for bugs is NOW!

● Stephen Colebourne:
○ @jodastephen - feedback & questions
○ http://blog.joda.org

● OpenGamma
○ Strata - open source market risk analytics
○ Cloud-based metrics for derivatives trading and clearing

http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://blog.joda.org
http://blog.joda.org

